Factors that can affect CRISPR targeting efficiency and specificity are:
- gRNA design: GenScript's proprietary gRNA design algorithm uses the most current genome assembly data available from NCBI and other publicly available sources, and selects the best target sequences to avoid off-target effects. We search for an ~20 bp locus in the endogenous genome of interest for which a highly-similar match does not appear elsewhere in the genome. Off-target Cas9-mediated cleavage can occur even with up to 3 mis-matches between the gRNA and the endogenous genome, though most papers have reported little to no off-target effects.
- Nuclease / targeting strategy: Most researches use the Cas9 nuclease isolated from Streptococcus pyogenes. Cas9 WT induces double-strand breaks that are typically repaired through non-homologous end joining (NHEJ), which introduces small insertions or deletions that lead to frame-shifts and total loss of protein expression. This has proven to be an easy and effective way to introduce phenotypic KO in every cell line and organism attempted to date. Another strategy employs a mutant version of this enzyme, Cas9-D10A (Nickase), which can be used to induce two single-strand breaks flanking a region you want to delete for a more specific or comprehensive knock-out. If you require gRNA sequences for use with a different enzyme, or have other special requests for your CRISPR targeting strategy, please emailyour request to us.
- Number of unique gRNA sequences used: Based on our in-house experience using our design tool to create knock-out cell lines, a single gRNA construct is typically sufficient to knock-out your gene of interest; however, we recommend ordering at least two gRNA constructs per gene that you want to target in order to increase your chance of successful genome editing without off-target effects.
When you order gRNA clones from GenScript, we deliver a sequence-verified plasmid containing all elements required for gRNA expression and genome binding: the U6 promoter, spacer (target) sequence, gRNA scaffold, and terminator. We guarantee sequence accuracy for gRNA clones we deliver; however, given the complexity of creating genomically edited cell lines including transfection and selection, we cannot guarantee the outcome of experiments performed using our gRNA constructs. If you prefer to receive sequence-validated KO or KI cell lines created using CRISPR technology, please refer to our GenCRISPR™ mammalian cell line service.